Функции вращения

Преобразование W можно найти путем сравнения функций Паттерсона кристалла неизвестной молекулы P

x и модели

P

m. Критерием соответствия ориентации модели и неизвестной молекулы служит так называемая функция вращения, которая представляет собой интеграл перекрывания функций P

x(r

) и P

m(Wr

) в элементе объема U и имеет максимумы если системы внутренних векторов модели и неизвестной молекулы ориентированы одинаково. Существуют методы расчета функции вращения как в прямом [22] так и в обратном пространстве [37]. В случае прямого пространства функции Паттерсона P

x и P

m рассчитываются в явном виде при заданном разрешении с помощью преобразования Фурье. Затем происходит вращение P

m относительно P

x с заданным шагом и ищутся максимумы функции вращения:

, (1)

где область интегрирования U - как правило сферический слой с центром в начале координат, задающийся минимальным и максимальным радиусами rmin и rmax, соответственно. Радиус rmin выбирается таким образом, чтобы исключить пик функции Паттерсона в начале координат (обычно rmin ³ 2Å), который может порождать ошибки при численном интегрировании. Радиус rmax выбирается так, чтобы включить в область интегрирования максимальное количество внутримолекулярных векторов при минимально-возможном количестве межмолекулярных [5].

Для уменьшения расчетных затрат при численном интегрировании на сетке используются только те точки, в которых функция P

m принимает наибольшие значения, а значения функции P

x в этих точках рассчитываются с помощью процедуры интерполяции [22].

Применяя преобразование Фурье и теорему Парсеваля для уравнения (1) можно получить выражение для функции вращения в обратном пространстве [37]:

, (2)

где h

= (h,k,l) обозначает миллеровские индексы, а WT - транспонированную матрицу оператора W. Действие WT

на |F

m(h

)|2 будет в общем случае приводить к возникновению точек в обратном пространстве, которые не описываются целочисленными индексами (h,k,l). Значения |F

m(h

)|2 в таких точках могут быть получены с помощью так называемой интерференционной функции G [2]:

(3)

Анализ максимумов R

(W) позволяет не только выявить наиболее вероятные ориентации модели в ячейке кристалла неизвестной молекулы, но и, в случае нескольких молекул в независимой части элементарной ячейки, найти операции точечной некристаллографической симметрии, связывающие ориентации этих молекул.


Обсуждение результатов
В настоящее время одной из наиболее актуальных проблем в современной медицине является профилактика и лечения психических заболеваний. Успешное решение данной проблемы возможно лишь в сочетании с изучением молекулярно-биохимических механизмов, лежащих в основе развития патологии нервной системы. Известно, что развитие патологических пр ...

Представления о времени и пространстве в классической механике в теории относительности. Принцип относительности в классической механике.
Впервые этот принцип был установлен Галилеем, но окончательную формулировку получил лишь в механике Ньютона. Для его понимания нам потребуется ввести понятие системы отсчета, или координат. Как известно, положение движущегося тела в каждый момент времени определяется по отношению к некоторому другому телу, которое называется системой от ...

На какие положения опиралась математическая исследовательская программа античности?
Первые научные программы сформировались в Древней Греции с VI по III в. до н. э. и надолго определили развитие науки. К ним относятся математическая, континуальная и атомистическая научные программы. Каждая программа формировалась в несколько этапов. Математическая программа, выросшая из философии Пифагора и Платона, начала развиваться ...